Journal of Materials Science Research and Reviews

  • About
    • About the Journal
    • Submissions & Author Guideline
    • Accepted Papers
    • Editorial Policy
    • Editorial Board Members
    • Reviewers
    • Printed Hard copy
    • Subscription
    • Membership
    • Publication Ethics and Malpractice Statement
    • Digital Archiving
    • Contact
  • Archives
  • Indexing
  • Publication Charge
  • Submission
  • Testimonials
  • Announcements
Advanced Search
  1. Home
  2. Archives
  3. 2022 - Volume 10 [Issue 3]
  4. Original Research Article

Submit Manuscript


Subscription



  • Home Page
  • Author Guidelines
  • Editorial Board Member
  • Editorial Policy
  • Propose a Special Issue
  • Membership

Electronic Structure, Charge-transfer and Optical Properties of Neutral, Anionic and Cationic Poly(3-hexylthiophene-2,5-diyl) (P3HT) Using DFT and TD-DFT Quantum Mechanical Methods

  • Abubakar Maigari
  • A. B Suleiman
  • A. S. Gidado
  • Chifu E. Ndikilar

Journal of Materials Science Research and Reviews, Page 54-71

Published: 29 December 2022

  • View Article
  • Download
  • Cite
  • References
  • Statistics
  • Share

Abstract


Poly(3-hexylthiophene-2,5-diyl) (P3HT) is a semiconducting polymer that is  useful in photoelectric material and can be used as a promising material for applications in solar cells, light-emitting diodes, displays, or other optoelectronic devices In this work, a theoretical study of Poly(3-hexylthiophene-2,5-diyl) (P3HT) was carried out based on density functional theory (DFT) and its derivative time dependent-density functional theory (TD-DFT) as implemented in Gaussian 09 package using B3LYP/6-31++G (d, p) and B3LYP/6-31+G(d) basis sets. The properties of the molecule such as electronic properties, charge transfer properties such as frontier molecular orbitals (FMOs), ionization potential (IP), and electron affinity (EA), and optical properties such as the maximum absorption (λmax) along with oscillator strengths (f) at the excited states in vacuum and solvents were calculated and reported for the neutral, anionic, and cationic forms of the  molecule. The energy band gap  of the material was best obtained at the anionic form with a value of  using the 6-31+G(d) basis set. This small band gap of the material eases the transporting of electrons from HOMO level to LUMO level when the material absorbs the wavelength light. The NLO properties show that anionic has the highest value of total dipole moment (μtot) as 5.84116 a.u while cationic has the highest value of first order hyperpolarizability (βtot) as  (2.623x10-30 esu using 6-311++G(d,p) basis. This value is found to be seven times more than that of urea (0.3728 x 10-30 esu) which is commonly used for the comparison of NLO properties. The oscillator strength expresses the probability of absorption of electromagnetic radiation, larger oscillator strength represents larger absorption coefficient. The UV-Vis results show that thiophene solvent at excited state   corresponds to the strongest absorption at    with excitation energy of  using 6-311++G(d,p) basis set. The theoretical values of the open circuit voltage were found to be 1.685 eV for neutral, 2.729 eV for cationic, and 0.576 eV for anionic. The ir spectra results confirm the stability of the molecule with the most intense frequency of 3023cm-1 at an intensity of 91.2256km/mol for neutral molecule and the least intense frequency was found to be 1112.9091cm-1 at an intensity of 158.8877km/mol for the cationic molecule. This work could be applied in the design of  more efficient functional photovoltaic organic materials.


Keywords:
  • TD-DFT
  • DFT
  • polymer-based materials
  • FMOs
  • ionization potential
  • electron affinity
  • Full Article - PDF
  • Review History

How to Cite

Maigari, A., Suleiman, A. B., Gidado, A. S., & Ndikilar, C. E. (2022). Electronic Structure, Charge-transfer and Optical Properties of Neutral, Anionic and Cationic Poly(3-hexylthiophene-2,5-diyl) (P3HT) Using DFT and TD-DFT Quantum Mechanical Methods. Journal of Materials Science Research and Reviews, 10(3), 54-71. Retrieved from https://journaljmsrr.com/index.php/JMSRR/article/view/216
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver

References

Lior N. Energy resources and use: The present situation and possible paths to the future. Energy. 2008;33:842-857.

Hottel H. Fifty years of solar energy research supported by the Cabot Fun. Solar Energy. 1989;43(2):107-128.

Acheson RM. An introduction to the chemistry of heterocyclic compounds. John Willey, BSP Books New Delhi, India; 2009.

Abhishek Kumar Mishra. Conducting polymers: Concepts and applications. Journal of Atomic, Molecular, Condensate & Nano Physics. 2018;5(2):159–193.

DOI: 10.26713/jamcnp.v5i2.842.

Burak Kadem, Aseel Hassan, Wayne Cranton. Efficient P3HT:PCBM bulk heterojunction organic solar cells; effect of post deposition thermal treatment J Mater Sci: Mater Electron; 2016.

DOI 10.1007/s10854-016-4661-8

Lawal M, Saeed MA, A. Musa, Muhammad Saeed Akthar. Enhancement of low energy photon absorption in Bi2S3 based Ti replacement: Prospect for high performance solar cells. Optik - International Journal for Light and Electron Optics. 2018;172:680- 690.

DOI:https://doi.org/10.1016/j.ijleo.2018.07.077

Muneerah M. Al Mogren, Adel A. El-Azhary, Wad. Z. Alkiali, Majdi Hochlaf. Electronic structure and properties of neutral, anionic and cationic silicon–nitrogen nanoclusters: Journal of Molecular Modeling. 2013;1610-2940.

DOI 10.1007/s00894-013-1809-9.

Si. Mohamed Bouzzine, Guillermo Salgado-Morán, Mohamed Hamidi, Mohammed Bouachrine, Alison Geraldo Pacheco, Daniel Glossman-Mitnik. DFT study of polythiophene energy band gap and substitution effects 2015;2015:Article ID 296386.

DOI:https://doi.org/10.1155/2015/296386

Mark A. Faist, Panagiotis E. Keivanidis, Samuel Foster, Paul H. Wo¨bkenberg, Thomas D. Anthopoulos, Donal D. C. Bradley, James R. Durrant, Jenny Nelson. Effect of multiple adduct fullerenes on charge generation and transport in photovoltaic blends with Poly(3-hexylthiophene-2,5-diyl). Journal of Polymer Science: Part B: Polymer Physics. 2010;2011:49:45–51 45.

DOI: 10.1002/polb.22125.

Brinkmann M. Structure and morphology control in thin films of regioregular Poly(3-hexylthiophene). Polymer Physics. 2011;49(17):1218-1233.

Thakur AK, Mukherjee AK, Preethichandra DMG, Takashima W, Kaneto K. Charge injection mechanism across the Au-poly„3-hexylthiophene-2,5-diyl interface: Journal of Applied Physics. 2007;101.

DOI:104508 2007,0021-8979/2007/10110/104508/5/$23.00.

Bourass M, Touimi Benjelloun A, Benzakour M, Mcharfi M, Hamidi M, Bouzzine SM, Serein-Spirau F, Jarrosson T, Lère-Porte JP, Sotiropoulos JM, Bouachrine M. Theoretical Studies by Using the DFT and TD-DFT of the effect of the bridge formed of thienopyrazine in solar cells: J. Mater. Environ. Sci. 2015;6(6):1542-1553.

Taura LS, Rabiu Nuhu Muhammad, Abdullahi Lawal, Gidado AS. Electronic structure and ir spectra analysis of tetrathiafulvelene (TTF) Using RHF and DFT quantum mechanical methods. Journal of Energy Research and Reviews; 2022.

DOI: 10.9734/JENRR/2022/v10i430262

Arnaud Maillard, Alain Rochefort. Structural and electronic properties of poly(3-hexylthiophene) stacked crystals. Journal of American Physical Society. 2009;1098-0121/2009/79(11) /115207(7).

DOI: 10.1103/PhysRevB.79.115207. Green, M. A. K.

Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED, Prog. Photovoltaics. 2012;20:12.

Hussein Hakim Abed, Noor Al-Huda Al-Aaraji, Jasmin M. Salman3, Hayder M. Abduljalil, Mohammed A. Al-Seady. Theoretical study on dye-sensitized solar cells using graphene quantum dot and curcumin, pahthalocyanine dyes. IOP Conf. Ser.: Earth Environ. Sci. 2022; 1088 012012.

DOI:10.1088/1755-1315/1088/1/012012

Kadem BY, Kadhim GR, Banimu S. Efficient P3HT:SWCNTs hybrids as hole transport layer in P3HT:PCBM organic solar cells. Journal of Materials Science; 2018.

DOI:https://doi.org/10.1007/s10854-018-8974-7

Khairulama FL, Yap CC, Jumali MH. Improved Performance of Inverted Type Organic Solar Cell Using Copper Io‐ dide-doped P3HT:PCBM as Active Layer For Low Light Application. Journal of Pre-proofs. 2020;128827.

DOI:https://doi.org/10.1016/j.matlet.2020.128827.

Hassana Muhammad Shuwa, Mansur Said, Gidado AS. Study of Electronic and Molecular Properties of Poly (3-Octylthiophene-2,5 diyl) Polymer using Density Functional Theory (DFT) And TimeDependant Density Functional Theory (TD-DFT). Journal of Materials Science Research and Reviews. 2021;8(2):41-52, 2021:Article no.JMSRR.70854.

Rabiu Nuhu Muhammad, Gidado AS. Investigating the effects of mono-halogen substitutions on the electronic, non-linear optical and thermodynamic properties of perylene based on density functional theory. Journal of Materials Science Research and Reviews. 2021;8(2):29-40, 2021; Article no.JMSRR.70860.

Ravindram P. Introduction to density functional theory. Condensed Matter Physics; 2015.

Casida ME, Jamorski C, Bohr F, Guan J, Salahub DR.; 1996.

S. P. Karna and A. T. Ullrich CA, Yang Z. A brief compendium of time-dependent density functional theory. Brazilian Journal of Physics. 2014;44:154-188.

Collins U Ibeji, Isaiah A Adejoro, Babatunde B Adeleke. A benchmark study on the properties of unsubstituted and some substituted polypyrroles. Journal of Physical Chemistry & Biophysics; Biophys. 2015;5:193.

DOI:10.4172/2161-0398.1000193.

Gidado AS, Babaji BG, Ado M. Determination of vibrational frequencies, HOMO-LUMO Energy and IR spectra of Nucleobases (Adenine, Cytosine, Guanine Thymine and Uracil). J. NAMP. 2015;31:465-476.

Bendjeddou A, Tahar A, Abdelkrim G, Didier V. Quantum chemical studies on molecular structure and stability descriptors of some p Nitrophenyltetrathiafulvalenes by density functional theory (DFT). Acta Chim. Pharm. Indica. 2016;6(2):32-44.

Abdulaziz H, Gidado AS, Musa A, Lawal. Electronic structure and nonlinear optical properties of neutral and ionic pyrene and its derivatives based on density functional theory. J Mater. Sci. Rev. 2019;2(3):1-13

El Alamy A, Bourass M, Amina A, Mohammed H, Mohammed B. New organic dyes based on phenylenevinylene for solar cells: DFT and TD-DFT investigation. Karbala. International Journal of Mordern Science. 2017;3:75-82.

Tahar Abbaz, Amel Bendjeddou, Didier Villemin. Molecular structure, HOMO, LUMO, MEP, natural bond orbital analysis of benzo and anthraquinodimethane derivatives. Journal of Pharmaceutical and Biological Evaluations 2018;5(2):27-39.

DOI: http://dx.doi.org/10.26510/2394-0859.pbe.2018.04.

Haider Abbas, Mohd Shkir, AlFaify S. Density functional of spectroscopy, electronic structure, linear and non-linear optical properties of L-proline lithium chloride and L-proline lithium bromide monohydrate: For laser applications. Phys. Sci. Int. J. 2015;(12):2342-2344.

Oyeneyin OE. Structural and solvent dependence of the electronic properties and corrosion inhibitive potentials of 1,3,4thiadiazole and its substituted derivatives: A theoretical investigation. Phys. Sci. int. J. 2017;16(2):1-8.

Khan MF, Bin Rashid R, Hossain A, Rashid MA. Computational study of solvation free energy, dipole moment, polarizability, hyperpolarizability and molecular properties of botulin, a constituent of Corypha taliera (Roxb.). Dhaka Univ. J. Pharm. Sci. 2017;16(1): 1-8.

Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al. Gaussian 03 and Gaussian 09, Revision A.1, Gaussian, Wallingford CT; 2009.

Wolf Van H. IR Pal 2.0: A table-driven infrared application; 2010.

Available:http://home.kpn.nl/~vheeswijk

Stratmann RE, Scuseria GE, Frisch MJ. An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. J. Chem. Phys. 1988;109(19):8218–8224.

Suzuki S, Morita Y, Fukui K, Sato K, Shiomi D, Takui T, Nakasuji K. Aromaticity on the pancake-bonded dimer of neutral phenalenyl radical as studied by MS and NMR spectroscopies and NICS analysis. J. Am. Chem. Soc. 2006;128(8):2530–2531.

Dkhissi A, Oluhib F, Chaalane A, Hiorns CR, Lartigau DC, Iratcabal P, Desbrieres J, Pouchan C. Theoretical and experimental study of low band gap polymers for organic solar cells. Journal of Physical Chemistry Chemical Physics. 2012;14:5613–5619.

DOI: 10.1039/c2cp40170c

Roldao CJ, Neto BA, Lavarda CF, Sato F. Effects of mechanical stretching on the properties of conjugated polymers: case study for MEH-PPV and P3HT oligomers. Journal of Polymer Science, Part B: Polymer Physics. 2018;56:1413–1426.

Mason PE, Brady JW. Tetrahedrality and the relationship between collective structure and radial distribution functions in liquid water. J. Phys. Chem. B; 2007.

Thaneshwor P. Kaloni, Georg Schreckenbach, Michael S. Freund. Band gap modulation in polythiophene and polypyrrolebased systems, Scientific Reports. 2016;6:36554.

DOI: 10.1038/srep36554

Mohamed Si. Bouzzine Guillermo SalgadoMorán, Mohamed Hamidi, Mohammed Bouachrine, Alison Geraldo Pacheco, Daniel Glossman-Mitnik. DFT study of polythiophene energy band gap and substitution effects. Journal of Chemistry. 2015;1-12.

Lakhlifi T, Abram T, Chtita S, Bejjit L, Bouachrine M. Electronic and photovoltaic Properties of new materials based on 6-mono-substituted and 3,6disubstituted acridines and their application to design novel materials for organic solar cells. Journal of Computational Methods in Molecular Design. 2014;4(3):19-27.

Wolf V.H IR PAL V2.0, A table driving infrared Application; 2010.

Available:http://home.kpn.nl/~vheeswijk

Kumer A, Boshir A, Sharif MA, Abdullah A. A theoretical study of Aniline and Nitrobenzene by computational overview. AJOPACS 38092. 2017;4(2):1-12.

Md. Rajib Munshi, Md. Zuel Rana , Sapan Kumar Sen, Md. Ruhul Amin Foisal, Md. Hazrat Ali. Theoretical investigation of structural, electronic, optical and thermoelectric properties of GaAgO2 based on Density Functional Theory (DFT): Two approach. World Journal of Advanced Research and Reviews. 2022;13(02):279–291.

DOI:https://doi.org/10.30574/wjarr.2022.13 .2.0130

Hanaa S. H. Ahmed, Yousif H. Azeez. Theoretical study for chemical reactivity descriptors of tetrathiafulvalene in gas phase and gas phase and solvent phases based on density functional theory. Passer J. 2021;3(2):167-173.
  • Abstract View: 41 times
    PDF Download: 21 times

Download Statistics

Downloads

Download data is not yet available.
  • Linkedin
  • Twitter
  • Facebook
  • WhatsApp
  • Telegram
Make a Submission / Login
Information
  • For Readers
  • For Authors
  • For Librarians
Current Issue
  • Atom logo
  • RSS2 logo
  • RSS1 logo


© Copyright 2010-Till Date, Journal of Materials Science Research and Reviews. All rights reserved.