Anode Materials for Lithium-based Batteries: A Review

Main Article Content

Ayodele O. Soge

Abstract

Graphite as a conventional anode material has been unsuccessful in satisfying the requirements of future high-performance lithium-ion batteries due to its low theoretical specific capacity (372 mAh g−1) and low operating potential (~0.1 V). This has resulted in strong demand for new anode materials with high reversible capacity and stable cycling life. Thus, diverse new anode materials have been proposed as a replacement for graphite in recent years. The novel materials reviewed in this study include transition-metal compounds, silicon-based compounds, and carbon-based compounds. The prospects of these materials in developing high-performance lithium-ion batteries for electric vehicles and large-scale energy storage applications are also highlighted.

Keywords:
Lithium-ion batteries, anode materials, lithium storage, battery capacity, energy density, cycling performance, lithiation, delithiation

Article Details

How to Cite
Soge, A. O. (2020). Anode Materials for Lithium-based Batteries: A Review. Journal of Materials Science Research and Reviews, 5(3), 21-39. Retrieved from https://journaljmsrr.com/index.php/JMSRR/article/view/30136
Section
Review Article

References

Liu K, Liu Y, Lin D, Pei A, Cui Y. Materials for lithium-ion battery safety. Sci. Adv. 2018;4(6):9820.

DOI: 10.1126/sciadv.aas9820

Oh SH, Kwon OH, Kang YC, Kim J, Cho JS. Highly integrated and interconnected CNT hybrid nanofibers decorated with a-iron oxide as freestanding anodes for flexible lithium polymer batteries. J. Mater. Chem. A. 2019;7:12480-12488.

DOI: 10.1039/c9ta01374a

Lou X, Li R, Zhu X, Luo L, Chen Y, Lin C, Li H, Zhao XS. New anode material for lithium-ion batteries: Aluminum Niobate (AlNb11O29). ACS Applied Materials & Interfaces. 2019;11(6):6089-6096.

DOI: 10.1021/acsami.8b20246

Feng K, Li M, Liu W, Kashkooli AG, Xiao X, Cai M, et al. Silicon-based anodes for lithium-ion batteries: From fundamentals to practical applications. Small. 2018;14(8): 1702737.

DOI: 10.1002/smll.201702737

Qi Z, Wu Y, Li X, Qu Y, Yang Y, Mei D. Microwave-assisted synthesis of CuC2O4•xH2O for anode materials in lithium-ion batteries with a high capacity. Ionics. 2020;26:33–42.

DOI:https://doi.org/10.1007/s11581-019-03181-4

Arico AS, Bruce P, Scrosati B, Tarascon JM, van Schalkwijk W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005;4: 366−377.

Liu Z, Yu J, Li X, Zhang L, Luo D, Liu X, et al. Facile synthesis of N-doped carbon layer encapsulated Fe2N as an efficient catalyst for oxygen reduction reaction. Carbon. 2018;127:636−642.

Zhang SS. The effect of the charging protocol on the cycle life of a Li-ion battery. J. Power Sources. 2006;161:1385−1391.

Chen YM, Yu L, Lou XW. Hierarchical tubular structures composed of Co3O4 hollow nanoparticles and carbon nanotubes for lithium storage. Angew. Chem. Int. Ed. 2016;55:5990.

Chen YM, Yu XY, Li Z, Paik U, Lou XW. Hierarchical MoS2 tubular structures internally wired by carbon nanotubes as a highly stable anode material for lithium-ion batteries. Sci. Adv. 2016;2:1600021.

Kim H, Han B, Choo J, Cho J. Angew. Chem. Int. Ed. Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. 2008;47:10151–10154.

Magasinski A, Dixon P, Hertzberg B, Kvit A, Ayala J, Yushin G. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater. 2010;9: 353–358.

Liu J, Kopold P, Van Aken PA, Maier J, Yu Y. Angew. Chem. Int. Ed. Energy storage materials from nature through nanotechnology: A sustainable route from reed plants to a silicon anode for lithium‐ion batteries. 2015;54(33):9632–9636.

Pasta M, Wessells CD, Huggins RA, Cui Y. A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage. Nat. Commun. 2012;3:1149.

Chan CK, Peng H, Liu G, Mcilwrath K, Zhang XF, Huggins RA, et al. High- performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008;3:31.

Lee SW, Mcdowell MT, Choi JW, Cui Y. Anomalous shape changes of silicon nanopillars by electrochemical lithiation. Nano Lett. 2011;11:3034-3039.

Wang C, Wu H, Chen Z, Mcdowell MT, Cui Y, Bao Z. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat. Chem. 2013;5:1042-1048.

Lin D, Lu Z, Hsu PC, Lee HR, Liu N, Zhao J et al. A high tap density secondary silicon particle anode fabricated by scalable mechanical pressing for lithium-ion batteries. Energy Environ. Sci. 2015;8: 2371–2376.

Lefley PW, Soge AO, Starkey J. Rechargeable batteries: The evolution and beyond Lithium-ion batteries. Energize Journal EE Publisher; 2012.

Scrosati B, Garche J. Lithium batteries: Status, prospects and future. Journal of Power Sources. 2010;195(9):2419–2430.

DOI: 10.1016/j.jpowsour.2009.11.048

Lu Y, Yu L, Lou XW. Nanostructured conversion-type anode materials for advanced lithium-ion batteries. Chem. 2018;4(5):972-996.

DOI: 10.1016/j.chempr.2018.01.003

Zhu GN, Wang YG, Xia YY. Ti-based compounds as anode materials for Li-ion batteries. Energy Environ. Sci. 2012;5: 6652–6667.

Zhang K, Han X, Hu Z, Zhang X, Tao Z, Chen J. Nanostructured Mn-based oxides for electrochemical energy storage and conversion. Chem. Soc. Rev. 2015;44: 699–728.

Wang X, Wang J, Chen Z, Yang K, Zhang Z, Shi Z, et al. Yolk-double shell [email protected]@C composite as high-performance anode materials for lithium-ion batteries. Journal of Alloys and Compounds. 2020;153656.

DOI:https://doi.org/10.1016/j.jallcom.2020.153656

Dai J, Li J, Zhang Q, Liao M, Duan T, Yao W. [email protected]@MoS2 microstructures fabricated from MOF template as advanced lithium-ion battery anode. Materials Letters. 2018;236:483-486.

DOI:https://doi.org/10.1016/j.matlet.2018.10.166

Zhou WK, Pang C, Zhan J, Yang Z, Chen HK, Liu Z, et al. ACS Nano. 2014;8:8323-8333.

Guan BY, Lu Y, Wang Y, Wu M, Lou XW. Porous iron–cobalt alloy/nitrogen‐doped carbon cages synthesized via pyrolysis of complex metal–organic framework hybrids for oxygen reduction. Adv. Funct. Mater. 2018;28(10):1706738.

Reddy MV, Subba GV, Chowdari BV. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev. 2013;113:5364–5457.

Aragon MJ, Leon B, Perez VC, Tirado JL. Synthesis and electrochemical reaction with lithium of mesoporous iron oxalate nanoribbons. Inorg Chem. 2018;47:10366–10371.

Aragon MJ, Leon B, Perez B, Vicente CP, Tirado JL, Chadwick AV, et al. Cobalt oxalate nanoribbons as negative-electrode material for lithium-ion batteries. Chem Mater. 2009;21:1834–1840.

Ma J, Zhang XD, Chen KZ, Li GC, Han XD. Morphology controlled synthesis of hematite hierarchical structures and their lithium storage performances. J Mater Chem A. 2013;1:5545–5553.

Yang Y, He L, Lu J, Liu Z, Wang N, Su J, et al. Rapid assemble of MnC2O4 microtubes using a microchannel reactor and their use as an anode material for lithium-ion batteries. Electrochimica Acta. 2019;321:134673.

DOI: 10.1016/j.electacta.2019.134673

Jiang F, Du R, Yan X, Zhang M, Han Q, Sun X, et al. Ferroferric oxide nanoclusters decorated Ti3C2Tx nanosheets as high performance anode materials for lithium ion batteries. Electrochimica Acta. 2020;29:35146.

DOI:https://doi.org/10.1016/j.electacta.2019.135146

Ahmed B, Anjum DH, Gogotsi Y, Alshareef HN. Atomic layer deposition of SnO2 on MXene for Li-ion battery anodes. Nano Energy. 2017;34:249-256.

Kong FY, He XD, Liu QQ, Qi XX, Sun DD, Zheng YT, et al. Enhanced reversible Li-ion storage in [email protected] MXene nanocomposite. Electrochem. Commun. 2018;97:16-21.

Wu F, Jiang Y, Ye ZQ, Huang YX, Wang ZH, Li SJ. A 3D flower-like VO2/MXene hybrid architecture with superior anode performance for sodium ion batteries. J. Mater. Chem. 2019;7:1315-1322.

Guo X, Xie XQ, Choi S, Zhao YF, Liu H, Wang CY, et al. Sb2O3/MXene (Ti3C2Tx) hybrid anode materials with enhanced performance for sodium-ion batteries. J. Mater. Chem. 2013;5:124445-12452.

Wang C, Zhu XD, Mao YC, Wang F, Gao XT, Qiu SY, et al. MXene-supported Co3O4 quantum dots for superior lithium storage and oxygen evolution activities. Chem. Commun. 2019;5:1237-1240.

Wang YS, Li YY, Qiu ZP, Wu XZ, Zhou PF, Zhou T, et al. [email protected] MXene hybrid with ultrahigh volumetric capacity as anode material for lithium-ion battery. J. Mater. Chem. 2018;6:11189-11197.

Ren M, Yang MZ, Liu WL, Li M, Su LW, Qiao CD, et al. Ultrasmall Fe3O4 nanocrystals decorated on 2D graphene nanosheets with excellent cycling stability as anode materials for lithium ion batteries. Electrochim. Acta. 2016;194:219-227.

Zhang SY, Zhang PG, Xie AJ, Li SK, Huang FZ, Shen YH. A novel 2D porous print fabric-like α-Fe2O3 sheet with high performance as the anode material for lithium-ion battery. Electrochim. Acta. 2016;212:912-920.

Zhou GM, Wang DW, Li F, Zhang LL, Li N, Wu ZS, et al. Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem. Mater. 2010;22:5306-5313.

Ding W, Wang S, Wu X, Wang Y, Li Y, Zhou P, et al. [email protected]/Ti3C2Tx MXene hybrids as anode materials for lithium-ion batteries. Journal of Alloys and Compounds. 2019;816:152566.

DOI:https://doi.org/10.1016/j.jallcom.2019.152566

Zhang X, Zhang Z, Zhou Z. MXene-based materials for electrochemical energy storage. Journal of Energy Chemistry. 2018;27:73-85.

Zhou J, Wang Y, Zhang J, Chen T, Song H, Yang HY. Two dimensional layered Co0.85Se nanosheets as a high-capacity anode for lithium-ion batteries. Nanoscale. 2016;8:14992-15000.

Liu W, Zhi H, Yu X. Recent progress in phosphorus based anode materials for lithium/sodium ion batteries. Energy Storage Materials. 2019;16:290-322.

Wu H, Wei K, Tang B, Cui Y, Zhao Y, Xue M, et al. A novel Li3P-VP nanocomposite fabricated by pulsed laser deposition as anode material for high-capacity lithium ion batteries. Journal of Electroanalytical Chemistry. 2019;841:21–25.

Wang J, Zhu Y, Zhang C, Kong F, Tao S, Qian B, et al. Bimetal phosphide Ni1.4Co0.6P nanoparticle/[email protected] nitrogen-doped graphene network as high-performance anode materials for lithium-ion batteries. Applied Surface Science. 2019;485:413–422.

Gao H, Yang F, Zheng Y, Zhang Q, Hao J, Zhang S, et al. Three-dimensional porous cobalt phosphide nanocubes encapsulated in a graphene aerogel as an advanced anode with high coulombic efficiency for high-energy lithium-ion batteries. ACS Appl. Mater. Interfaces. 2019;11: 5373−5379.

Lou X, Li R, Zhu X, Luo L, Chen Y, Lin C, et al. New anode material for lithium-ion batteries: Aluminum Niobate (AlNb11O29). ACS Appl. Mater. Interface. 2019;11(6): 6089-6096.

DOI: 10.1021/acsami.8b20246

Hu L, Luo L, Tang L, Lin C, Li R, Chen Y. Ti2Nb2xO4+5x anode materials for lithium- ion batteries: A comprehensive review. J. Mater. Chem. A. 2018;6:9799−9815.

Li R, Lin C, Wang N, Luo L, Chen Y, Li J. Advanced composites of complex Ti-based oxides as anode materials for lithium-ion batteries. Adv. Compos. Hybrid Mater. 2018;1:440−459.

Han JT, Huang YH, Goodenough JB. New anode framework for rechargeable lithium batteries. Chem. Mater. 2011;23: 2027−2029.

Han JT, Goodenough JB. 3-V full cell performance of anode framework TiNb2O7/Spinel LiNi0.5Mn1.5O4. Chem. Mater. 2011;23:3404−3407.

Lu X, Jian Z, Fang Z, Gu L, Hu YS, Chen W, et al. Atomic scale investigation on lithium storage mechanism in TiNb2O7. Energy Environ. Sci. 2011;4:2638−2644.

Chen B, Evans JRG. Elastic moduli of clay platelets. Scr. Mater. 2006;54:1581–1585.

An W, Gao B, Mei S, Xiang B, Fu J, Wang L, et al. Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes. Nat Commun. 2019;10:1447.

DOI:https://doi.org/10.1038/s41467-019-09510

Roduner E. Size matters: Why nanomaterials are different. Chem. Soc. Rev. 2006;35:583.

Arico AS, Bruce P, Scrosati B, Tarascon JM, van Schalk W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005;4:366.

Chen W, Fan ZL, Dhanabalan A, Chen CH, Wang CL. Mesoporous silicon anodes prepared by magnesiothermic reduction for lithium ion batteries. J. Electrochem. Soc. 2011;158(9):A1055-1058.

Yao Y, McDowell MT, Ryu I, Wu H, Liu NA, Hu LB, et al. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett. 2011;11: 2949-2954.

Xiao Q, Gu M, Yang H, Li B, Zhang C, Liu Y, et al. Inward lithium-ion breathing of hierarchically porous silicon anodes. Nat. Commun. 2015;6:8844.

Chan CK, Peng HL, Liu G, McIlwrath K, Zhang XF, Huggins RA, et al. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008;3(1):31-35.

Hatchard TD, Dahn JR. In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. J. Electrochem. Soc. 2004;151:A838-842.

Wu H, Chan G, Choi JW, Ryu I, Yao Y, McDowell MT, et al. Stable cycling of double- walled silicon nanotube battery anodes through solid–electrolyte interphase control. Nat. Nanotechnol. 2012;7:310-315.

Song T, Xia JL, Lee JH, Lee DH, Kwon MS, Choi JM, et al. Arrays of sealed silicon nanotubes as anodes for lithium ion batteries Nano Lett. 2010;10:1710-1716.

Wen ZH, Lu GH, Mao S, Kim H, Cui SM, Yu KH, et al. Silicon nanotube anode for lithium-ion batteries. Electrochem. Commun. 2013;29:67-70.

Park MH, Kim MG, Joo J, Kim K, Kim J, Ahn S. Silicon nanotube battery anodes. Nano Lett. 2009;9:3844-3847.

Szczech JR, Jin S. Nanostructured silicon for high capacity lithium battery anodes. Energy Environ. Sci. 2011;4:56-72.

Ohara S, Suzuki J, Sekine K, Takamura T. A thin film silicon anode for Li-ion batteries having a very large specific capacity and long cycle life. J. Power Sources. 2004;136(2):303-306.

Wang B, et al. Self-template construction of mesoporous silicon submicrocube anode for advanced lithium ion batteries. Energy Storage Mater. 2018;15:A8389–147.

Li XL, Gu M, Hu S, Kennard R, Yan P, Chen X, et al. Mesoporous silicon sponge as an anti-pulverisation structure for high-performance lithium-ion battery anodes. Nat. Commun. 2014;5:4105.

Ngo DT, Le HTT, Pham X, Jung J, Vu NH, Fisher JG, et al. Highly porous coral-like silicon particles synthesised by an ultra-simple thermal-reduction method. J. Mater. Chem. 2018;A6:2834–2846.

Idrees M, Batool S, Kong J, Zhuang Q, Liu H, Shao Q, et al. Polyborosilazane derived ceramics - Nitrogen sulfur dual doped graphene nanocomposite anode for enhanced lithium ion batteries, Electrochimica Acta. 2018;296:925–937.

DOI:https://doi.org/10.1016/j.electacta.2018.11.088

Ahn D, Raj R. Cyclic stability and C-rate performance of amorphous silicon and carbon based anodes for electrochemical storage of lithium. J. Power Sour. 2001;196:2179-2186.

Ahn D, Raj R. Thermodynamic measurements pertaining to the hysteretic intercalation of lithium in polymer-derived silicon oxycarbide. J. Power Sour. 2010;195:3900-3906.

Feng Y. Electrochemical properties of heat-treated polymer-derived SiCN anode for lithium ion batteries. Electrochim. Acta. 2010;55:5860-5866.

Zhao ZY, Guan RG, Zhang JH, Zhao ZY, Bai PK. Effects of process parameters of semisolid stirring on microstructure of Mg-3Sn-1Mn-3SiC (wt%) strip processed by rheo-rolling. Acta Metall. Sin. (Engl. Lett.). 2017;30:66-72.

Zhao Z, Bai1 P, Guan R, Murugadoss V, Liu H, Wang X, et al. Microstructural evolution and mechanical strengthening mechanism of Mg-3Sn-1Mn-1La alloy after heat treatments. Mater. Sci. Eng. A. 2018;734:200-209.

Kang H, Cheng Z, Lai H, Ma H, Liu Y, Mai X, et al. Superlyophobic anti-corrosive and self-cleaning titania robust mesh membrane with enhanced oil/water separation. Separation Purification Technol. 2018;201:193-204.

Guo Z, Xie P, Dang F, He B, Lin J, Fan R, et al. Bio-gel derived nickel/carbon nanocomposites with enhanced microwave absorption. J. Mater. Chem. C. 2018;6: 8812-8822.

Kong L, Yin X, Yuan X, Zhang Y, Liu X, Cheng L. Electromagnetic wave absorption properties of graphene modified with carbon nanotube/poly (dimethyl siloxane) composites. Carbon. 2018;73:185-193.

Guo J, Song H, Liu H, Luo C, Ren Y, Ding T, et al. Polypyrrole-interface-functionalized nano-magnetite epoxy nanocomposites as electromagnetic wave absorber with enhanced flame retardancy. J. Mater. Chem. C. 2017;5:5334-5344.

Du H, Zhao C, Lin J, Hu Z, Shao Q, Guo J, et al. Carbon nanomaterials in direct liquid fuel cells. Chemical Record. 2018;18:1365-1372.

Luo Q, Ma H, Hou Q, Li Y, Ren J, Dai X, et al. All-carbon electrode-based endurable flexible perovskite solar cells. Adv. Func. Mater. 2018;28:1706777.

Ma Y, Lv L, Guo Y, Fu Y, Shao Q, Wu T, et al. Porous lignin based poly (acrylic acid)/organo-montmorillonite nanocomposites: Swelling behaviors and rapid removal of Pb (II) ions. Polymer. 2017;128:12-23.

Batool S, Idrees M, Hussain Q, Kong J. Adsorption of copper (II) by using derived-farmyard and poultry manure biochars: Efficiency and mechanism. Chem. Phys. Lett. 2017;689:190-198.

Batool S, Idrees M, Al-Wabel MI, Ahmad M, Hina K, Ullah H, et al. Sorption of Cr(III) from aqueous media via naturally functionalized microporous biochar: Mechanistic study. Microchem. J. 2019;144:242–253.

Lu Y, Biswas MC, Guo Z, Jeon JW, Wujcik EK. Recent developments in bio-monitoring via advanced polymer nanocomposite-based wearable strain sensors. Biosensors and Bioelectronics. 2019;123:167-177.

Xu Q, Li JY, Sun JK, Yin YX, Wan LJ, Guo YG. Watermelon-inspired Si/C microspheres with hierarchical buffer structures for densely compacted lithium-ion battery anodes. Advanced Energy Materials. 2016;7(3):1601481.

DOI: 10.1002/aenm.201601481

Wang F, Wang B, Ruan T, Gao T, Song R, Jin F, et al. ACS Nano. 2019;13(10): 12219-12229.

DOI: 10.1021/acsnano.9b07241

Liu N, Lu ZD, Zhao J, McDowell MT, Lee HW, Zhao WT, Cui Y. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 2014;9:187-192.

Landi BJ, Ganter MJ, Cress CD, DiLeo RA, Raffaelle RP. Carbon nanotubes for lithium ion batteries. Energy & Environmental Science. 2009;2(6):638-654.

Yan Y, Li C, Liu C, Mutlu Z, Dong B, Liu J, et al. Bundled and dispersed carbon nanotube assemblies on graphite superstructures as freestanding lithium-ion battery anodes. Carbon. 2018;142:238–244.

DOI:https://doi.org/10.1016/j.carbon.2018.10.044

Yang Y, Jin S, Zhang Z, Du Z, Liu H, Yang H, et al. Nitrogen-doped hollow carbon nanospheres for high-performance Li-ion batteries. ACS Applied Materials & Interfaces. 2017;9(16):14180-14186.

Du Z, Xu J, Jin S, Shi Y, Guo C, Kong X, et al. The correlation between carbon structures and electrochemical properties of sulfur/carbon composites for Li-S batteries. Journal of Power Sources. 2017;341:139-146.

Gao B, Bower C, Lorentzen JD, Fleming L, Kleinhammes A, Tang XP, et al. Enhanced saturation lithium composition in ball-milled single-walled carbon nanotubes. Chemical Physics Letters. 2000;327(1):69-75.

Yu K, Wang J, Wang X, Liang J, Liang C. Sustainable application of biomass by-products: Corn straw-derived porous carbon nanospheres using as anode materials for lithium ion batteries. Materials Chemistry and Physics. 2020;243:122644.

DOI:10.1016/j.matchemphys.2020.122644

Zhao F, Li D, Cao B, Liu M, Chen K, Chen Y, et al. Hierarchical carbon microstructures prepared from oil-palm-shell tracheids for Li–S batteries. New J. Chem. 2017;41:4110–4115.

Huang J, Liang Y, Hu H, Liu S, Cai Y, Dong H, et al. Ultrahigh-surface-area hierarchical porous carbon from chitosan: Acetic acid mediated efficient synthesis and its application in superior supercapacitors. J. Mater. Chem. 2017;5:24775–24781.

Chen Z, Ye S, Evans SD, Ge Y, Zhu Z, Tu Y, et al. Confined assembly of hollowcarbon spheres in carbonaceous nanotube: A spheres-in-tube carbon nanostructure with hierarchical porosity for high-performance supercapacitor. Small. 2018;14:1704015.

Khan JH, Marpaung F, Young C, Lin J, Islam MT, Alsheri SM, et al. Jute-derived microporous/mesoporous carbon with ultra-high surface area using a chemical activation process. Microporous Mesoporous Mater. 2019;274:251–256.

Chen J, Hong M, Chen J, Hu T, Xu Q. Fabrication of hierarchical porous hollow carbon spheres with few-layer graphene framework and high electrochemical activity for supercapacitor. Appl. Surf. Sci. 2018;443:367–373.

Luo HM, Chen H, Chen YZ, Li P, Zhang JQ, Zhao X. Simple synthesis of porouscarbon materials for high-performance supercapacitors. J. Appl. Electrochem. 2016;46:703–712.

Tian WQ, Wu XY, Wang KX, Jiang YM, Wang JF, Chen JS. Hierarchical porous carbon spheres as an anode material for lithium ion batteries. RSC Adv. 2013;3: 10823.

Zhong M, Yan J, Wu H, Shen W, Zhang J, Yu C, et al. Multilayer graphene spheres generated from anthracite and semi-coke as anode materials for lithium-ion batteries. Fuel Processing Technology. 2020;198: 106241.

DOI: 10.1016/j.fuproc.2019.106241

Zhang JX, Cao HQ, Tang XL, Fan WF, Peng GC, Qu MZ, Graphite/grapheme oxide composite as high capacity and binder-free anode material for lithium ion batteries. J. Power Sources. 2013;241: 619–626.

Luo B, Zhi LJ. Design and construction of three dimensional graphene- based composites for lithium ion battery applications. Energy Environ. Sci. 2015;8:456–477.

Rodríguez-Manzo JA, Pham-Huu C, Banhart F. Graphene growth by a metal catalyzed solid-state transformation of amorphous carbon. ACS Nano. 2011;5:15291534.

Kim J, Lee J, Choi Y, Jo C. Synthesis of hierarchical linearly assembled graphitic carbon nanoparticles via catalytic graphitization in SBA-15. Carbon. 2014;75:95–103.

Liu Y, Liu Q, Gu J, Kang D, Zhou F, Zhang W, et al. Highly porous graphitic material prepared by catalytic graphitization. Carbon. 2013;64:132–140.

Wang B, Ryu J, Choi S, Song G, Hong D, Hwang C, et al. ACS Nano. 2018;12(2): 1739-1746.

DOI: 10.1021/acsnano.7b08489

Choi E, Kim D, Lee I, Chae SJ, Kim A, Pyo SG, et al. SnO2-graphene nanocomposite free-standing film as anode in lithium-ion batteries. Electron. Mater. Lett. 2015;11: 836−840.

Cong HP, Xin S, Yu SH. Flexible nitrogen-doped graphene/SnO2 foams promise kinetically stable lithium storage. Nano Energy. 2015;13:482−490.

Wang X, Cao XQ, Bourgeois L, Guan H, Chen SM, Zhong YT, et al. N-doped graphene-SnO2 sandwich paper for high-performance lithium-ion batteries. Adv. Funct. Mater. 2012;22:2682− 2690.

Zheng H, Xing B, Zhang C, Chen L, Zhao H, Han X, et al. In-situ synthesis of MnO2/Porous graphitic carbon composites as high-capacity anode materials for lithium-ion batteries. Energy & Fuels. 2020;34(2):2480-2491.

DOI: 10.1021/acs.energyfuels.9b04325

Jin J, Wen Z, Ma G, Lu Y, Cui Y, Wu M, et al. Flexible self-supporting graphene-sulfur paper for lithium sulfur batteries. RSC Adv. 2013;3:2558−2560.

Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, et al. Preparation and characterization of graphene oxide paper. Nature. 2007;448: 457−460.

Wang B, Li X, Luo B, Jia Y, Zhi L. One-dimensional/two-dimensional hybridization for self-supported binder-free silicon-based lithium ion battery anodes. Nanoscale. 2013;5:1470−1474.

Prabakar SJR, Hwang YH, Bae EG, Shim S, Kim D, Lah MS, et al. SnO2/graphene composites with self-assembled alternating oxide and amine layers for high Li-storage and excellent stability. Adv. Mater. 2013;25:3307−3312.

Yang Y, Lu J, Yu H, Zhang Y, Huang Y, Huang Y, et al. Hydrodynamic force-induced rapid assembly of mesoporous MnO/C hollow microtube as an anode material for lithium-ion batteries. Ceramics International. 2019;45:22281–22291.