Electrochemical Studies on the Corrosion Behavior of Mild Steel in NaCl Aqueous Solutions with Zinc Ions

Main Article Content

Md. Saiful Islam
Masatoshi Sakairi

Abstract

The corrosion behaviors of mild steel in NaCl aqueous solution with different Zn2+ concentrations have been investigated electrochemically. The immersion potentials were influenced by the presence of Zn2+ and shifted to the positive direction with increasing the Zn2+ concentration in the solutions. Zn2+ suppressed the current density in both cathodic and anodic polarization, and the inhibition effects increased with increasing the Zn2+ concentrations. The electrochemical impedance spectroscopy (EIS) results showed the highest charge transfer resistance in the Zn-rich solution due to the formation of Zn-layer with the steel surface. The Zn-layer thickness increased, and the area of defects in the oxide film on the steel surface decreased with increasing the Zn2+ concentration. Therefore, it was suggested that the corrosion inhibition ability of mild steel in NaCl aqueous solution significantly improved with increasing the concentration of Zn2+ in the solution.

Keywords:
Mild steel, corrosion, electrochemical test, polarization, EIS.

Article Details

How to Cite
Islam, M. S., & Sakairi, M. (2021). Electrochemical Studies on the Corrosion Behavior of Mild Steel in NaCl Aqueous Solutions with Zinc Ions. Journal of Materials Science Research and Reviews, 7(2), 1-13. Retrieved from https://journaljmsrr.com/index.php/JMSRR/article/view/30174
Section
Original Research Article

References

Wan Nik WB, Zulkifli F, Rahman MM, Rosliza R. Corrosion behavior of mild steel in seawater from two different sites of kuala terengganu coastal area, Int. J. Basic and Appl. Sci. IJBAS-IJENS. 2011; 11 (6):75-80.

Schindelholz E, Risteen BE, Kelly RG. Effect of relative humidity on corrosion of steel under sea salt aerosol proxies, J. Electrochem. Soc. 2014;161(10):C460-C470.
Available:http://dx.doi.org/10.1149/2.0231410jes

Morcillo M, Chico B, Alcantara J, Diaz I, Wolthuis R, De la Fuente D. SEM/Micro-Raman characterization of the morphologies of marine atmospheric corrosion products formed on mild steel. J. Electrochem. Soc. 2016;163(8):C426-C439.
Available:http://dx.doi.org/10.1149/2.0411608jes

Amin MA, Ibrahim MM. Corrosion and corrosion control of mild steel in concentrated H2SO4 solutions by a newly synthesized glycine derivative. Corros. Sci. 2011;53(3):873-885.
Available:http://dx.doi.org/10.1016/j.corsci.2010.10.022

Prabhu RA, Venkatesha TV, Shanbhag AV, Kulkarni GM, Kalkhambkar RG. Inhibition effects of some schif’s bases on the corrosion of mild steel in hydrochloric acid solution. Corros. Sci. 2008;50:3356-3362.
Available:http://dx.doi.org/10.1016/j.corsci.2008.09.009

Soliz A, Caceres L. Corrosion of a carbon steel cylindrical band exposed to a concentrated NaCl solution flowing through an annular flow cell. J. Electrochem. Soc. 2015;162(8):C385-C95.
Available:http://dx.doi.org/10.1149/2.0201508jes.

Khara S, Choudhary S, Sangal S, Mondal K. Corrosion resistant Cr-coating on mild steel by powder roll bonding. Surf. Coat. Technol. 2016;296:203-210.
Available:http://dx.doi.org/10.1016/j.surfcoat.2016.04.033

Gardiner CP, Melchers RE. Corrosion of mild steel by coal and iron ore. Corros. Sci. 2002;44:2665-2673.
Available:http://dx.doi.org/10.1016/S0010-938X(02)00063-X

Ahamed KR, Farzana BA, Diraviam SJ, Dorothy R, Rajendran S, Al-Hashem A. Mild steel corrosion inhibition by the aqueous extract of Commelina benghalensis leaves. Electrochim. Acta. 2019;37(1):51-70.
Available:http://dx.doi.org/ 10.4152/pea.201901051

Medrano-Vaca MG, Gonzalez-Rodriguez JG, Nicho ME, Casales M, Salinas-Bravo VM. Corrosion protection of carbon steel by thin films of poly (3-alkyl thiophenes) in 0.5 M H2SO4, Electrochim. Acta. 2008;53(9):3500-3507.
Available:http://dx.doi.org/10.1016/j.electacta.2007.12.003

Hassan HH, Abdelghani E, Amin MA. Inhibition of mild steel corrosion in hydrochloric acid solution by triazole derivatives part I. polarization and EIS studies. Electrochim. Acta. 2007;52(22): 6359-6366.
Available:http://dx.doi.org/10.1016/j.electacta.2007.04.046

Veloz MA, Gonzalez I. Electrochemical study of carbon steel corrosion in buffered acetic acid solutions with chlorides and H2S. Electrochim. Acta. 2002;48(2):135-144.
Available:http://dx.doi.org/10.1016/S0013-4686(02)00549-2

Krstajic NV, Grgur BN, Jovanovic SM, Vojnovic MV. Corrosion protection of mild steel by polypyrrole coatings in acid sulfate solutions. Electrochim. Acta. 1997;42(11): 1685-1691.
Available:https://doi.org/10.1016/S0013-4686(96)00313-1

Zhou Q, Sheikh S, Ou P, Chen D, Hu Q, Guo S. Corrosion behavior of Hf0.5Nb0.5Ta0.5Ti1.5Zr refractory high entropy in aqueous chloride solutions. Electrochem. Commun. 2019;98:63-68.
Available:https://doi.org/10.1016/j.elecom.2018.11.009

Foley RT. Role of the chloride ion in iron corrosion. Corrosion. 1970;26(2):58-70.
Available:https://doi.org/10.5006/0010-9312-26.2.58

Macdonald DD. The point defect model for the passive state. J. Electrochem. Soc. 1992;139(12):3434-3449.
Available:https://doi.org/10.1149/1.2069096

McCafferty E. Introduction to corrosion science. Springer, New York. 2010;283-286.
Available:https://doi.org/10.1007/978-1-4419-0455-3

Deyab MA. Electrochemical investigations on pitting corrosion inhibition of mild steel by provitamin B5 in circulating cooling water. Electrochim. Acta. 2016;202:262-268.
Available:https://doi.org/10.1016/j.electacta.2015.11.075

Song Y, Jiang G, Chen Y, Zhao P, Tian Y. Effects of chloride ions on corrosion of ductile iron and carbon steel in soil environments. Scientific reports. 2017;7(1).
Available:https://doi.org/10.1038/s41598-017-07245-1

Otani K, Sakairi M. Effects of metal cations on corrosion of mild steel in model fresh water. Corros. Sci. 2016;111:302-312.
Available:https://doi.org/10.1016/j.corsci.2016.05.020

Islam Md.S, Otani K, Sakairi M. Effects of metal cations on mild steel corrosion in 10 mM Cl- aqueous solution. Corros. Sci. 2018;131:17-27.
Available:https://doi.org/10.1016/j.corsci.2017.11.015

Islam Md S, Otani K, Sakairi M. Role of metal cations on corrosion of coated steel substrate in model aqueous layer. ISIJ International. 2018;58(9):1616-1622.
Available:https://doi.org/10.2355/isijinternational.ISIJINT-2018-071

Islam Md.S, Otani K, Sakairi M. Corrosion inhibition effects of metal cations on SUS304 in 0.5 M Cl- aqueous solution. Corros. Sci. 2018;140:8-17.
Available:https://doi.org/10.1016/j.corsci.2018.06.028

Prawoto Y, Ibrahim K, Nik WBW. Effect of pH and chloride concentration on the corrosion of duplex stainless steel. Arabian J. Sci. Eng. 2009;34(2C):115-127.
Available:http://dx.doi.org/10.1016/j.jmrt.2016.11.001

Song Y, Jiang G, Chen Y, Zhao P, Tian Y. Effects of chloride ions on corrosion of ductile iron and carbon steel in soil environment. Scientific Report. 2017; 7(1):6865.
Available:http://dx.doi.org/10.1038/s41598-017-07245-1

Otani K, Sakairi M, Sasaki R, Kaneko A, Seki Y, Nagasawa D. Effect of metal cations on corrosion behavior and surface film structure of the A3003 aluminum alloy in model tap waters. J. Solid State Electrochem. 2014;18(2):325-332.
Available:https://doi.org/10.1007/s10008-013-2260-7

Islam Md. S, Sakairi M. Effects of Zn2+ concentration on the corrosion of mild steel in NaCl aqueous solutions. J. Electrochem. Soc. 2019;166(2):C83-C90.
Available:https://doi.org/10.1149/2.1271902jes

Drazic DM, Vorkapic LZ. Inhibitory effects of manganeous, cadmium and zinc ions on hydrogen evolution reaction and corrosion of iron in sulphuric acid solutions. Corros. Sci. 1978;18(10):907-910.
Available:https://doi.org/10.1016/0010-938X(78)90011-2

Zhang S, Shibata T, Haruna T. Inhibition effect of metal cations to intergranular stress corrosion cracking of sensitized type 304 stainless steel. Corros. Sci. 2005; 47(4):1049-1061.
Available:https://doi.org/10.1016/j.corsci.2004.06.014

Felhosi I, Keresztes Zs, Karman FH, Mohai M, Bertoti I, Kalman E. Effecrts of bivalent cations on corrosion inhibition of steel by 1-hydroxyethane-1, 1-diphosphonic acid. J. Electrochem. Soc. 1999;146(3):961-969.
Available:https://doi.org/10.1149/1.1391706

Telegdi J, Shaglouf MM, Shaban A, Karman FH, Betroti I, Mohai M, Kalman E. Influence of cations on the corrosion inhibition efficiency of aminophosphonic acid. Electrochim. Acta. 2001;46(24):3791-3799.
Available:https://doi.org/10.1016/S0013-4686(01)00666-1

Sathiyanarayanan S, Jeyaprabha C, Muralidharan S, Venkatachari G, Inhibition of iron corrosion in 0.5 M sulphuric acid by metal cations. App. Surf. Sci. 2006; 252(23):8107-8112.
Available:https://doi.org/10.1016/j.apsusc.2005.10.028

Zhang DQ, Cai QR, He XM, Gao LX, G. S. Kim GS. Corrosion inhibition and adsorption behavior of methionine on copper in HCl and synergistic effect of zinc ions. Mater. Chem. Phys. 2009;114(2-3):612-617.
Available:https://doi.org/10.1016/j.matchemphys.2008.10.007

Prabakaran M, Venkatesh M, Ramesh S, Periasamy V. Corrosion inhibition behavior of propyl phosphonic acid-Zn2+ system for carbon steel in aqueous solution. App. Surf. Sci. 2013;276:592-603.
Available:https://doi.org/10.1016/j.apsusc.2013.03.138

Otani K, Islam Md.S, Sakairi M. Inhibition ability of gluconates for freshwater corrosion of mild steel enhanced by metal cations. J. Electrochem. Soc. 2017; 164(9): C498-C504.
Available:https://doi.org/10.1149/2.0491709jes

Thebault F, Vuillemin B, Oltra R, Allely C, Ogle K, Heintz O. Influence of magnesium content on the corrosion resistance of the cut-edge of Zn-Mg-coated steel. Corros. Sci. 2015;97:100-106.
Available:https://doi.org/10.1016/j.corsci.2015.04.019

Tada E, Satoh S, Kaneko H. The spatial distribution of Zn2+ during galvanic corrosion of a Zn/steel couple. Electrochim. Acta. 2004;49(14):2279-2285.
Available:https://doi.org/10.1016/j.electacta.2004.01.008

Sakairi M, Uchida Y, Yoshiyuki H. Initial stage of localized corrosion in artificial pits formed with photon rupture on 55mass%Al-Zn coated steels. ISIJ International. 2006;46(8):1218-1222.
Available:https://doi.org/10.2355/isijinternational.46.1218

Hirasaki T, Nishikata A, Tsuru T. Influence of dissolved zinc ions on the anodic dissolution of iron. J. Japan Inst. Metals. 2002;66(6):643-648.
Available:https://doi.org/10.2320/jinstmet1952.66.6_643

Vacandio F, Massiani Y, Gergaud P, Thomas O. Stress porosity measurements and corrosion behavior of AIN films deposited on steel substrates. Corros. Sci. 2000;359(2):221-227.
Available:https://doi.org/10.1016/S0040-6090(99)00763-4

Lanje AS, Sharma SJ, Ningthoujam RS, Pode RB. Low temperature dielectric studies of zinc oxide (ZnO) nanoparticles prepared by precipitation method. Adv. Powder Technol. 2013;24(1):331-335.
Available:https://doi.org/10.1016/j.apt.2012.08.005

Islam Md.S, Sakairi M. Corrosion inhibition of mild steel by metal cations in high pH simulated freshwater at different temperatures. Corros. Sci. 2019;153:100-108.
Available:https://doi.org/10.1016/j.corsci.2019.03.040

Mahdavian M, Naderi R. Corrosion inhibition of mild steel in sodium chloride solution by some zinc complexes. Corros. Sci. 2011;53(4):1194-1200.
Available:https://doi.org/10.1016/j.corsci.2010.12.013.

Bokris JOM, Reddy AKN. Modern Electrochemistry. 1973;1,2.

Adams RN. Electrochemistry at solid electrode. Marcel Dekker, New York; 1969.
Available:https://doi.org/10.1002/bbpc.19690731029

Bard AJ, Lund H. Encyclopedia of the electrochemistry of the elements. Marcel Dekker, New York; 1971-1980.