Electrochemical Studies on the Corrosion Behavior of Mild Steel in NaCl Aqueous Solutions with Zinc Ions
Article Sidebar
Main Article Content
Abstract
The corrosion behaviors of mild steel in NaCl aqueous solution with different Zn2+ concentrations have been investigated electrochemically. The immersion potentials were influenced by the presence of Zn2+ and shifted to the positive direction with increasing the Zn2+ concentration in the solutions. Zn2+ suppressed the current density in both cathodic and anodic polarization, and the inhibition effects increased with increasing the Zn2+ concentrations. The electrochemical impedance spectroscopy (EIS) results showed the highest charge transfer resistance in the Zn-rich solution due to the formation of Zn-layer with the steel surface. The Zn-layer thickness increased, and the area of defects in the oxide film on the steel surface decreased with increasing the Zn2+ concentration. Therefore, it was suggested that the corrosion inhibition ability of mild steel in NaCl aqueous solution significantly improved with increasing the concentration of Zn2+ in the solution.
Article Details
References
Schindelholz E, Risteen BE, Kelly RG. Effect of relative humidity on corrosion of steel under sea salt aerosol proxies, J. Electrochem. Soc. 2014;161(10):C460-C470.
Available:http://dx.doi.org/10.1149/2.0231410jes
Morcillo M, Chico B, Alcantara J, Diaz I, Wolthuis R, De la Fuente D. SEM/Micro-Raman characterization of the morphologies of marine atmospheric corrosion products formed on mild steel. J. Electrochem. Soc. 2016;163(8):C426-C439.
Available:http://dx.doi.org/10.1149/2.0411608jes
Amin MA, Ibrahim MM. Corrosion and corrosion control of mild steel in concentrated H2SO4 solutions by a newly synthesized glycine derivative. Corros. Sci. 2011;53(3):873-885.
Available:http://dx.doi.org/10.1016/j.corsci.2010.10.022
Prabhu RA, Venkatesha TV, Shanbhag AV, Kulkarni GM, Kalkhambkar RG. Inhibition effects of some schif’s bases on the corrosion of mild steel in hydrochloric acid solution. Corros. Sci. 2008;50:3356-3362.
Available:http://dx.doi.org/10.1016/j.corsci.2008.09.009
Soliz A, Caceres L. Corrosion of a carbon steel cylindrical band exposed to a concentrated NaCl solution flowing through an annular flow cell. J. Electrochem. Soc. 2015;162(8):C385-C95.
Available:http://dx.doi.org/10.1149/2.0201508jes.
Khara S, Choudhary S, Sangal S, Mondal K. Corrosion resistant Cr-coating on mild steel by powder roll bonding. Surf. Coat. Technol. 2016;296:203-210.
Available:http://dx.doi.org/10.1016/j.surfcoat.2016.04.033
Gardiner CP, Melchers RE. Corrosion of mild steel by coal and iron ore. Corros. Sci. 2002;44:2665-2673.
Available:http://dx.doi.org/10.1016/S0010-938X(02)00063-X
Ahamed KR, Farzana BA, Diraviam SJ, Dorothy R, Rajendran S, Al-Hashem A. Mild steel corrosion inhibition by the aqueous extract of Commelina benghalensis leaves. Electrochim. Acta. 2019;37(1):51-70.
Available:http://dx.doi.org/ 10.4152/pea.201901051
Medrano-Vaca MG, Gonzalez-Rodriguez JG, Nicho ME, Casales M, Salinas-Bravo VM. Corrosion protection of carbon steel by thin films of poly (3-alkyl thiophenes) in 0.5 M H2SO4, Electrochim. Acta. 2008;53(9):3500-3507.
Available:http://dx.doi.org/10.1016/j.electacta.2007.12.003
Hassan HH, Abdelghani E, Amin MA. Inhibition of mild steel corrosion in hydrochloric acid solution by triazole derivatives part I. polarization and EIS studies. Electrochim. Acta. 2007;52(22): 6359-6366.
Available:http://dx.doi.org/10.1016/j.electacta.2007.04.046
Veloz MA, Gonzalez I. Electrochemical study of carbon steel corrosion in buffered acetic acid solutions with chlorides and H2S. Electrochim. Acta. 2002;48(2):135-144.
Available:http://dx.doi.org/10.1016/S0013-4686(02)00549-2
Krstajic NV, Grgur BN, Jovanovic SM, Vojnovic MV. Corrosion protection of mild steel by polypyrrole coatings in acid sulfate solutions. Electrochim. Acta. 1997;42(11): 1685-1691.
Available:https://doi.org/10.1016/S0013-4686(96)00313-1
Zhou Q, Sheikh S, Ou P, Chen D, Hu Q, Guo S. Corrosion behavior of Hf0.5Nb0.5Ta0.5Ti1.5Zr refractory high entropy in aqueous chloride solutions. Electrochem. Commun. 2019;98:63-68.
Available:https://doi.org/10.1016/j.elecom.2018.11.009
Foley RT. Role of the chloride ion in iron corrosion. Corrosion. 1970;26(2):58-70.
Available:https://doi.org/10.5006/0010-9312-26.2.58
Macdonald DD. The point defect model for the passive state. J. Electrochem. Soc. 1992;139(12):3434-3449.
Available:https://doi.org/10.1149/1.2069096
McCafferty E. Introduction to corrosion science. Springer, New York. 2010;283-286.
Available:https://doi.org/10.1007/978-1-4419-0455-3
Deyab MA. Electrochemical investigations on pitting corrosion inhibition of mild steel by provitamin B5 in circulating cooling water. Electrochim. Acta. 2016;202:262-268.
Available:https://doi.org/10.1016/j.electacta.2015.11.075
Song Y, Jiang G, Chen Y, Zhao P, Tian Y. Effects of chloride ions on corrosion of ductile iron and carbon steel in soil environments. Scientific reports. 2017;7(1).
Available:https://doi.org/10.1038/s41598-017-07245-1
Otani K, Sakairi M. Effects of metal cations on corrosion of mild steel in model fresh water. Corros. Sci. 2016;111:302-312.
Available:https://doi.org/10.1016/j.corsci.2016.05.020
Islam Md.S, Otani K, Sakairi M. Effects of metal cations on mild steel corrosion in 10 mM Cl- aqueous solution. Corros. Sci. 2018;131:17-27.
Available:https://doi.org/10.1016/j.corsci.2017.11.015
Islam Md S, Otani K, Sakairi M. Role of metal cations on corrosion of coated steel substrate in model aqueous layer. ISIJ International. 2018;58(9):1616-1622.
Available:https://doi.org/10.2355/isijinternational.ISIJINT-2018-071
Islam Md.S, Otani K, Sakairi M. Corrosion inhibition effects of metal cations on SUS304 in 0.5 M Cl- aqueous solution. Corros. Sci. 2018;140:8-17.
Available:https://doi.org/10.1016/j.corsci.2018.06.028
Prawoto Y, Ibrahim K, Nik WBW. Effect of pH and chloride concentration on the corrosion of duplex stainless steel. Arabian J. Sci. Eng. 2009;34(2C):115-127.
Available:http://dx.doi.org/10.1016/j.jmrt.2016.11.001
Song Y, Jiang G, Chen Y, Zhao P, Tian Y. Effects of chloride ions on corrosion of ductile iron and carbon steel in soil environment. Scientific Report. 2017; 7(1):6865.
Available:http://dx.doi.org/10.1038/s41598-017-07245-1
Otani K, Sakairi M, Sasaki R, Kaneko A, Seki Y, Nagasawa D. Effect of metal cations on corrosion behavior and surface film structure of the A3003 aluminum alloy in model tap waters. J. Solid State Electrochem. 2014;18(2):325-332.
Available:https://doi.org/10.1007/s10008-013-2260-7
Islam Md. S, Sakairi M. Effects of Zn2+ concentration on the corrosion of mild steel in NaCl aqueous solutions. J. Electrochem. Soc. 2019;166(2):C83-C90.
Available:https://doi.org/10.1149/2.1271902jes
Drazic DM, Vorkapic LZ. Inhibitory effects of manganeous, cadmium and zinc ions on hydrogen evolution reaction and corrosion of iron in sulphuric acid solutions. Corros. Sci. 1978;18(10):907-910.
Available:https://doi.org/10.1016/0010-938X(78)90011-2
Zhang S, Shibata T, Haruna T. Inhibition effect of metal cations to intergranular stress corrosion cracking of sensitized type 304 stainless steel. Corros. Sci. 2005; 47(4):1049-1061.
Available:https://doi.org/10.1016/j.corsci.2004.06.014
Felhosi I, Keresztes Zs, Karman FH, Mohai M, Bertoti I, Kalman E. Effecrts of bivalent cations on corrosion inhibition of steel by 1-hydroxyethane-1, 1-diphosphonic acid. J. Electrochem. Soc. 1999;146(3):961-969.
Available:https://doi.org/10.1149/1.1391706
Telegdi J, Shaglouf MM, Shaban A, Karman FH, Betroti I, Mohai M, Kalman E. Influence of cations on the corrosion inhibition efficiency of aminophosphonic acid. Electrochim. Acta. 2001;46(24):3791-3799.
Available:https://doi.org/10.1016/S0013-4686(01)00666-1
Sathiyanarayanan S, Jeyaprabha C, Muralidharan S, Venkatachari G, Inhibition of iron corrosion in 0.5 M sulphuric acid by metal cations. App. Surf. Sci. 2006; 252(23):8107-8112.
Available:https://doi.org/10.1016/j.apsusc.2005.10.028
Zhang DQ, Cai QR, He XM, Gao LX, G. S. Kim GS. Corrosion inhibition and adsorption behavior of methionine on copper in HCl and synergistic effect of zinc ions. Mater. Chem. Phys. 2009;114(2-3):612-617.
Available:https://doi.org/10.1016/j.matchemphys.2008.10.007
Prabakaran M, Venkatesh M, Ramesh S, Periasamy V. Corrosion inhibition behavior of propyl phosphonic acid-Zn2+ system for carbon steel in aqueous solution. App. Surf. Sci. 2013;276:592-603.
Available:https://doi.org/10.1016/j.apsusc.2013.03.138
Otani K, Islam Md.S, Sakairi M. Inhibition ability of gluconates for freshwater corrosion of mild steel enhanced by metal cations. J. Electrochem. Soc. 2017; 164(9): C498-C504.
Available:https://doi.org/10.1149/2.0491709jes
Thebault F, Vuillemin B, Oltra R, Allely C, Ogle K, Heintz O. Influence of magnesium content on the corrosion resistance of the cut-edge of Zn-Mg-coated steel. Corros. Sci. 2015;97:100-106.
Available:https://doi.org/10.1016/j.corsci.2015.04.019
Tada E, Satoh S, Kaneko H. The spatial distribution of Zn2+ during galvanic corrosion of a Zn/steel couple. Electrochim. Acta. 2004;49(14):2279-2285.
Available:https://doi.org/10.1016/j.electacta.2004.01.008
Sakairi M, Uchida Y, Yoshiyuki H. Initial stage of localized corrosion in artificial pits formed with photon rupture on 55mass%Al-Zn coated steels. ISIJ International. 2006;46(8):1218-1222.
Available:https://doi.org/10.2355/isijinternational.46.1218
Hirasaki T, Nishikata A, Tsuru T. Influence of dissolved zinc ions on the anodic dissolution of iron. J. Japan Inst. Metals. 2002;66(6):643-648.
Available:https://doi.org/10.2320/jinstmet1952.66.6_643
Vacandio F, Massiani Y, Gergaud P, Thomas O. Stress porosity measurements and corrosion behavior of AIN films deposited on steel substrates. Corros. Sci. 2000;359(2):221-227.
Available:https://doi.org/10.1016/S0040-6090(99)00763-4
Lanje AS, Sharma SJ, Ningthoujam RS, Pode RB. Low temperature dielectric studies of zinc oxide (ZnO) nanoparticles prepared by precipitation method. Adv. Powder Technol. 2013;24(1):331-335.
Available:https://doi.org/10.1016/j.apt.2012.08.005
Islam Md.S, Sakairi M. Corrosion inhibition of mild steel by metal cations in high pH simulated freshwater at different temperatures. Corros. Sci. 2019;153:100-108.
Available:https://doi.org/10.1016/j.corsci.2019.03.040
Mahdavian M, Naderi R. Corrosion inhibition of mild steel in sodium chloride solution by some zinc complexes. Corros. Sci. 2011;53(4):1194-1200.
Available:https://doi.org/10.1016/j.corsci.2010.12.013.
Bokris JOM, Reddy AKN. Modern Electrochemistry. 1973;1,2.
Adams RN. Electrochemistry at solid electrode. Marcel Dekker, New York; 1969.
Available:https://doi.org/10.1002/bbpc.19690731029
Bard AJ, Lund H. Encyclopedia of the electrochemistry of the elements. Marcel Dekker, New York; 1971-1980.