Structural, Electronic and Electrochemical Properties of Vanadium Disulphide Material for Energy Conversion and Storage in Li/Na-ion Battery

Main Article Content

Gloria Isendi Murila
Henry Barasa Wafula
Maxwell Mageto


We review work on rechargeable metal-ion batteries. Rechargeable metal-ion batteries play a crucial role in modern transport, communication and electronic industries with lithium ion batteries being the most common on the market. Despite the successful application, of lithium-ion batteries; their energy density, volumetric and gravimetric capacities, life span and charge /discharge rate have raised a lot of concern. Current research is being focused on the anode materials currently in use and also substituting Lithium/Sodium ion batteries. This review, we look into the structural, electronic and electrochemical properties of a newly synthesized Vanadium disulphide as promising near future anode for both sodium and lithium ion batteries

Rechargeable metal-ion batteries; electronic industries, volumetric and gravimetric, structural, electronic and electrochemical properties, environmental pollution, Lithium ion batteries, 2D transitional metal chalcogenides (TMDs).

Article Details

How to Cite
Murila, G. I., Wafula, H. B., & Mageto, M. (2021). Structural, Electronic and Electrochemical Properties of Vanadium Disulphide Material for Energy Conversion and Storage in Li/Na-ion Battery. Journal of Materials Science Research and Reviews, 7(2), 41-49. Retrieved from
Review Article


Deng M, Kwac K, Li M, Jung V, Park H. Stability, Molecular Sieving and ion diffusion selectivity of a lamellar membrane from two-dimension Molybdenum disulfide. Nano Letter.2017;17:2342.

Dincer I. Renewable energy and sustainable development: A crucial review. Renewable sustainable Energy Rev. 2000;4:157.

Hu C, Xiao Y, Zou Y, Dai L. Carbon-based Metal -free electrocatalysis for energy storage and environmental protection. Electrochemical Energy Rev. 2018;1: 84.

Fan X, Liu X, Hu W, Zhang C, Lu J. Advances in the development of power supplies for the internet of Everythings. Info. Mat. 2019;1:130.

Zhang C, Deng Y, Hu W, Qiao J, Zhang L, Zhang J. A review of Electrolyte materials and compositions for electrochemical Supercapacitors. Chemical Society Rev. 2015;44:7484.

Goodenough J, Kim Y. Challenges for Rechageable Lithium Batteries. Chemistry of Materials. 2009;22:587-603.

Wu D, Li X, Xu B, Twu N, Liu L, Ceder G. NaTiO2: A Layered anode material for Sodium ion Batteries. Energy Environment Science. 2015;8:195-202.

Chen C, Hu P, Hu X, Mei Y, Huang Y. Bismuth Oxyiodide Nanosheets : A Novel High-Energy Anode material for Lithium ion Batteries. Chem. Commun. 2015;51:2798-2801.

Chevrier O, Hautier G, Juin A, Moore C, Kim S, Ma X, Ceder G. Voltage, stability and diffusion barrier deferences between sodium-ion and lithium-ion intarcalation materials. Energy Environment Sci. 2011;4:3680-3688.

Bommier C., Ji X. Recent Development on Anodes for Na-ion Batteries. Isr. J. Chem. 2015;55:486-507.

Tu C, Lin L, Xiao B, Chen Y. Highly efficient supercapacitor electrode with the two -dimensional Tungsten disulfide and reduced Graphene oxide hybrid Nanoshhets. J. Power Sources. 2016; 320:78.

Liu H, Dawei S, Guoxiu W, Shizhang Q. An ordered Mesoporous WS2 anode material with superior Electrochemical Perfomance for Lithium ion batteries. Material Chemistry. 2012;22:17437-17440.

Wang Q, Yan J, Fan Z. Carbon materials for high volumetric perfomance supercapacitors: design progress, challenges and oppotunities. Energy Environment Science. 2016;9:729.

Chen C, Wen Y, Hu X, Ji X, Yan M, Mai L,Huang Y. Na+ Interculation Pseudocapacitance in Graphene-coupled Titanium Oxide Enabling Ultra-Fast Sodium and long-term cycling. Nat. Commun. 2015;6:6927-6929.

Sun Y, Liu X, Jiang Y, Li J, Diang J, Hu W, Zhang C. Recent Advances and challenges in divalent and multivalent metals electrode for metal-air batteries. Journal of Mater, Chem. A. 2019;7:18183.

Zhou W, Yin Z, Du Y, Huang X, Zeng Z, Fan Z, Zhang H. Synthesis of few-layered MoS2 Nanoshhets - coated TiO2 Nanobelt Heterostucures for Enhanced Photocatalysis Actvitioes. Nano letters. 2013;9:140-147

Feng J, Sun X, Wu C, Peng L, Lin C, Hu S, Xie Y. Metallic Few-layered Vs2 Ultrathin Nanoshhets: High Two Dimensional conductivity for In-plane Supercapacitors. American chemical Society. 2011;133:17832-17838.

Xu G, Zeng Y, Rui X, Xiao N, Zhu J, Zhang W, Hung H. Controlled soft-templete synthesis of ultrathin [email protected] FeS Nanosheets with High -Li-Storage perfomance. American Chemical Society. 2012;6:4713-4721.

Wang Q, Kalanter-Zadar K, Kis A, Coleman J, Strano M. Electronics and optoelectronics of two-dimensional transitional metal dichalcogenides . Nat. Nanotechol. 2012;7:699-712.

Li L, Li Z, Yoshimra A, Sun C, Wang T, Chen Y, Koratkar N. Vanadium disulfide flakes with nanolayered titanium disulfide coating as cathode materials in Lithium ion Batteries. Nature Communications. 2019;10:1764.

Wang W, Sun Z, Zhang W, Fan Q, Sun Q, Cui X, Xiang B. First-principles investigations of vanadium disulfide for lithium and sodium ion battery applications. Royal Society of Chemistry. 2016;6:54874-54879.

Marseglia E. Transitional Metal dichalcogenides and their intercalates. Int. Rev. Phys. chem. 1983;3:177-216

Matte H, Gomathi A, Manna A, Late D, Datta R, Pati S, Rao C. MoS2 and VS2 analogues of graphene. Angewandte Chemie International Edition. 2010; 49(24):4059-4062.

Luo N, Si C, Duan W. Stractural and Electronic phase transitions in ferromagnetic Monolayer VS2 induced by charge doping. Physical Review B. 2017;95:205432.

Min K, Wang B, Lee Y, Sun Q. A density functional theory study of the tunable structure,magnetism and metal–insulator phase transition in VS2 monolayers induced by in-plane biaxial strain. Nano Research. 2015;8:1348–1356.

Perdew J, Burke K, Wang Y. Generalized gradiend approximation for the exchande-correlation hole of a many -electron system. Physical review B. 1996;23:16533.

Perdew J, Parr G, Levy M, Bulduz J. Density functional theory for functional particles number: derivative discontinuities of the energy. Phys. Rev. Latt. 1982;49:1691-1694.

Takao T, Kimihiko H. Self-interaction corrections in density functional theory. Chemical physics. 2014;140.

Perdew B, Zungue A. Self-interaction correction to Density-fuctional Approximation for many Electron density. Physical Review B. 1981;22:5048-5079.

Hedin L. New method for calculating the one-particle Green's function with application to the electron-gas problem. Phys. Rew.1965;139:796-A823.

Yang E, Jung Y. Two-Dimensional Transition Metal Dichalcogenides Monolayer as a promising Sodium-ion Battery Anodes. Physical Chemistry C. 2015;119:26374-26380.

Xiao J, Choi D, Cosimbescu L, Koech P, Liu J, Lemmon J. Exfoliated MoS2 Nanocomposite; An anode metrial for Lithium -ion Batteries. Chem. Mater. 2010;22:4522-4524.

Jing Y, Zhou Z, Cabrera C, Chem Z. Metallic VS2 Monolayewr: A promising 2D anode material for lithium-ion batteries. Physical Chemistry. 2013;117:25409-25413.

Murila G, Manyali G, Wafula H. Adsorption Energies of Lithium and Sodium ions on Vanadium Disulphide: A DFT Study. Materials Science Research and Reviews. 2018;2:1-6

Ling C, Mizumo F. Capture lithium in alpha-mno2; Insights from first principles. Chemistry of Materials. 2012;24:3943-3951.

Zheng H, Jiang K, Abe T, Ogumi Z. Electrochemical intarcarlation of lithium into a natural graphite anode in quaternary ammonium-based ionic liquid electrolytes. Carbons. 2006;44:203-210.

Wang D, Zhao Y, Lian R, Yang D, Zhang D, Meng X, Chen G. Atomic Insight into the structural transformation and anionic /cationic redox reactionsn pf VS2 nanosheets in the Na-ion Batteris. Material Chemistry A. 2018;6:15985-15992

Li W, Maleki H, Sari K, Li X. Emerging layered metallic vanadium disulfide for rechargeable metal-ion batteries: Progress and opportunities. Chemsuschem. 2020;13:1172-1202.

Aydinal M, Kohan A, Ceder G, Cho K, Joannopoulous J. Ab-initio study of Lithium intercalation in metal oxides and metal dichalcogenides. Phys. Rev. B. 1997;56:1354-1365.

Sun Y, Liu X, Jiang Y, Li J, Diang J, Hu W, Zhang C. Recent Advances and challenges in divalent and multivalent metals electrode for Metal-air batteries. Journal of Mater, Chem. A. 2019;7:18183.

Salavati M, Rabczuk T. Application of higly stretchable and conductive two-dimensional 1T-VS2 and VSe2 as anode materials for Li-,Na- and Ca- ion storage. computational material science. 2020;160:360-367.

Su J, Pei Y, Yang Z, Wang X. Ab initiostudy of graphene-like monolayermolybdenum disulfide as a promising anodematerial for rechargeable sodium ion batteries. Royal Society of Chemistry. 2014;4:43183-43188.

Pollak E, Geng B, Jeon K, Lucas I, Richardson T, Wang F, Koskecki R. The Interaction of Li+with Single-Layer andFew-Layer Graphene. Nano. Lett. 2010;10:3386-3388.

Liu T, Jin Z, Liu D, Du C, Wang L, Lin H, Li Y. A density functional theory study of high-perfomance pre-litrhiated MS2(Mo, W, V) Monolayers as an anode material for lithium ion batteries. Nature research. 2020;10:6897.